TCRA OPTIONS for Source Control / Source Stabilization

OPTION	DESCRIPTION	ADVANTAGE	DISADVANTAGE	RELATIVE
				COST
PRPs	NW Crn – ACM / Geo.	Inexpensive, Easy to	Structural instable, not	Low
	Textile Fabric	construct	compatible with NON-	
	E Crn - sand		TCRA	
Steel Sheet Piling (SP)	Thin interlocking driven	Non-permeable,	Moderately expensive,	Moderate
	piles	Structurally stable,	Design needed prior to	
		Compatible w/ future	construction	
		NON-TCRA uses		
Vinyl / Composite SP	SP of synthetic material	Less expensive than	Design needed prior to	Low -
		steel SP, strong, easy to	construction	moderate
		construct, corrosion		
		free, Compatible w/		
		future NON-TCRA uses		
Gabion Walls	Formed plastic structure	Flexible and very strong,	Walls water permeable, use	Moderate
	filled with rocks, connected	support for erosion,	as structural support system	
	w/ galvanized brackets		to contaminant wall	
Rock Revetment	Strategically placed rocks	Easy to construct,	For use as support system	Low-moderate
	that protect shore line from	Minimal design,	only to contaminant wall	
	erosion			
Geo-Tubes	Textile bags filled with sand	Moderate difficulty	Design needed,	Low-moderate
	and buried	construction, erosion	May be structurally	
		control	insufficient for future	
			Remedial uses	

DIRECTOR'S BRIEFING DOCUMENT TIME CRITICAL REMOVAL ACTION (TCRA) SAN JACINTO WASTE PITS SUPERFUND SITE

CURRENT STATUS

- Review PRPs TCRA proposal
- Review TRCA options for source control / source stabilization
- Finalize DRAFT TCRA action memo

CURRENT ACTIONS

- Finalize Time Critical Removal Action Memo (03/17/10)
- Finalize DRAFT Statement of Work (SOW) Time Critical Removal Action

FUTURE ACTIONS

- Meet with stakeholders to discuss TCRA (03/26/10)
- Begin TCRA construction (04/19/10)

2.3,7,8-TCDD Equivalents (TEQs) in Surface Sediments*

O TCEQ and USEPA (2006)

TCEQ and USEPA (2006)
University of Houston and Parsons (2006)
URS (2010)

Figure 5
Sediment TEQs (WHO 2005, ng/kg dw)
Within the Original Impoundments
SJRWP Superfund/MIMC and IPC

HORIZONTAL DATUM: Texas South Central, NAD83. US Survey Feet. **VERTICAL DATUM: NAVD 88.**

FEATURE SOURCES: Drawing Prepared from COE Horizontal Datum: Texas South Central, NAD83, US Survey Feet Vertical Datum: NAVD 88

Original Perimeter of Impoundments

Virgil C. McGinnes Trustee Parcel

2,3,7,8-TCDD Equivalents (TEQs) in Surface Sediments*

- TCEQ and USEPA (2006)
- University of Houston and Parsons (2006)
- Weston (2006)
- URS (2010)

Figure 8
Conceptual ACBM, Water
Control Berm and Sand Cover
SJRWP Superfund/MIMC and IPC

* J = Estimated (pg/g dw, ND=1/2DL, WHO 05)

Sediment TEQs (pg/g dw, ND=1/2DL, WHO 05) within the Preliminary Site Boundary SJRWP Superfund/MIMC and IPC

- ENSR and EHA (1995)
- TCEQ and USEPA (2006)
- University of Houston and Parsons (2006)
- Weston (2006)
- URS (2010)

* J = Estimated